- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Czuba, Jonathan A. (1)
-
David, Scott R. (1)
-
Edmonds, Douglas A. (1)
-
Johnston, Graham H. (1)
-
Schubert, John T. (1)
-
Sumaiya, Sumaiya (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Meandering river floodplains often contain intermittently flooded complex channel networks. Many questions remain as to the pervasiveness, function, and evolution of these floodplain channels. In this present work, we analyzed size‐specific sediment transport potential and assessed whether the channelized floodplain of the meandering East Fork White River near Seymour, Indiana is on a net erosional or depositional trajectory. We applied a two‐dimensional hydrodynamic model and used simulated model results to estimate the largest sediment size that can be moved in suspension and as bedload at various flows for grain size classes between 4 µm and 64 mm. We developed a probabilistic method that integrates the largest sediment size that can be moved at various flows to compute an effective grain size, which we compared to measured field data. Results show that the river is capable of supplying sand to the floodplain and these floodplain channels can transport sand in suspension and gravel as bedload. This suggests that sediment supplied from the river could be transported as bedload in floodplain channels. These floodplain channels are supply limited under the current hydrologic regime and the grain size distribution of the bed surface is set by the flow conditions; thus, these floodplain channels are net erosional. Finally, our proposed method of probabilistically integrating the largest sediment size that can be moved at various flows can be used to predict the upper end of the grain size distribution in suspension and in bed material, which is applicable to floodplains as well as coastal areas.more » « less
An official website of the United States government
